Fall Motion Detection with Fall Severity Level Estimation by Mining Kinect 3D Data Stream

نویسندگان

  • Orasa Patsadu
  • Bunthit Watanapa
  • Piyapat Dajpratham
  • Chakarida Nukoolkit
چکیده

This paper proposes an integrative model of fall motion detection and fall severity level estimation. For the fall motion detection, a continuous stream of data representing time sequential frames of fifteen body joint positions was obtained from Kinect’s 3D depth camera. A set of features is then extracted and fed into the designated machine learning model. Compared with existing models that rely on the depth image inputs, the proposed scheme resolves background ambiguity of the human body. The experimental results demonstrated that the proposed fall detection method achieved accuracy of 99.97% with zero false negative and more robust when compared with the state-of-the-art approach using depth of image. Another key novelty of our approach is the framework, called fall severity injury score (FSIS), for determining the severity level of falls as a surrogate for seriousness of injury on three selected risk areas of body: head, hip and knee. The framework is based on two crucial pieces of information from the fall: 1) the velocity of the impact position and 2) the kinetic energy of the fall impact. Our proposed method is beneficial to caregivers, nurses or doctors, in giving first aid/diagnosis/treatment for the subject, especially, in cases where the subject loses consciousness or is unable to respond.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vision-based 3D Human Motion Analysis for Fall Detection and Bed-exiting

Fall is one of the most dangerous and costly accidents that threaten health of elderly people, and a large portion of falls occurs when a patient is trying to exit a bed. This thesis proposes two vision-based approaches for general fall detection and bed-exiting detection for elderly people, respectively. The Kinect sensor is chosen as the major monitoring device. The first approach exploits th...

متن کامل

Robust Fall Detection by Combining 3D Data and Fuzzy Logic

Falls are a major risk for the elderly and where immediate help is needed. The elderly, especially when suffering from dementia, are not able to react to emergency situations properly, thus falls need to be detected automatically. An overview of different classes of fall detection approaches is presented and a vision-based approach is introduced. We propose the use of a Kinect to obtain 3D data...

متن کامل

Fall Detection on Embedded Platform Using Kinect and Wireless Accelerometer

In this paper we demonstrate how to accomplish reliable fall detection on a low-cost embedded platform. The detection is achieved by a fuzzy inference system using Kinect and a wearable motion-sensing device that consists of accelerometer and gyroscope. The foreground objects are detected using depth images obtained by Kinect, which is able to extract such images in a room that is dark to our e...

متن کامل

Fall Risk Assessment and Early-Warning for Toddler Behaviors at Home

Accidental falls are the major cause of serious injuries in toddlers, with most of these falls happening at home. Instead of providing immediate fall detection based on short-term observations, this paper proposes an early-warning childcare system to monitor fall-prone behaviors of toddlers at home. Using 3D human skeleton tracking and floor plane detection based on depth images captured by a K...

متن کامل

A Survey of Applications and Human Motion Recognition with Microsoft Kinect

Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this article, we present a comprehensive survey on Kinect applications, and the latest research and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017